
SLTS031B

(Revised 9/30/2000)

- 90% Efficiency
- Adjustable Output Voltage
- Internal Short Circuit Protection
- Over-Temperature Protection
- On/Off Control (Ground Off)
- Small SIP Footprint
- Wide Input Range

GND

GND

GND

GND

 V_{out}

 V_{out}

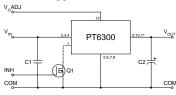
Vout Adj (5)

8

9

10

11


12

The PT6300 Series is a line of High-Performance 3 Amp, 12-Pin SIP (Single In-line Package) Integrated

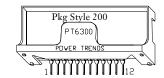
Switching Regulators (ISRs) designed to meet the on-board power conversion needs of battery powered or other equipment requiring high efficiency and small size. This high performance ISR family offers a unique combination of features combining 90% typical efficiency with open-collector on/off control and adjustable output voltage.

Quiescent current in the shutdown mode is typically less than 100µA.

Standard Application

C1 = Optional 1µF ceramic

 C_2 = Required 100 μ F electrolytic (1)


 $Q_1 = NFET$

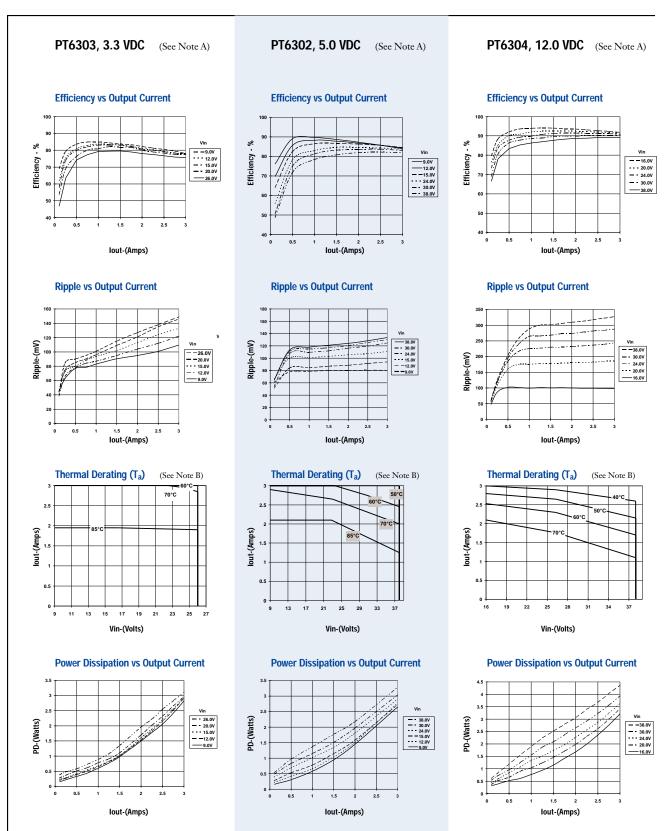
Pin-Out Information Ordering Information

Pin	Function	PT6302 □ = +5 Volts
1	Inhibit (30V max)	PT6303 □ = +3.3 Volts
2	V _{in}	PT6304 □ = +12 Volts
3	V _{in}	PT6314 \square = +1.5Volts

PT Series	Suffix	(PT1234X)
Case/Pin		

Configuration		
Vertical Through-Hole	N	
Horizontal Through-Hole	Α	
Horizontal Surface Mount	С	

Specifications

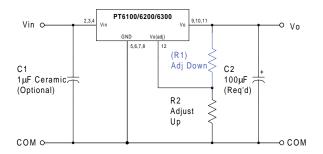

Characteristics				PT6300 SER	ES	
(T _a =25°C unless noted)	Symbols	Conditions	Min	Тур	Max	Units
Output Current	I_{o}	Over V _{in} range	0.1 (2)	_	3.0	A
Short Circuit Current	I_{sc}	$V_{\rm in} = V_{\rm o} + 5V$	_	5.0	_	Apk
Input Voltage Range (Note: inhibit function cannot be used above 30V.)	$ m V_{in}$	$\begin{array}{ccc} 0.1 \leq I_{o} \leq 3.0 \; A & V_{o} = \; 12V \\ V_{o} = 5.0V \\ V_{o} = 3.3V \\ V_{o} = 1.5V \end{array}$	16 9 9 9.0	_ _ _	30/38 (3) 30/38 (3) 26 17	V
Output Voltage Tolerance	ΔV_{o}	Over V_{in} Range, $I_{o} = 3.0$ A $T_{a} = 0$ °C to $+60$ °C	_	±1.0	±2.0	$%V_{o}$
Line Regulation	Regline	Over V _{in} range	_	±0.25	±0.5	$%{ m V_o}$
Load Regulation	Regload	$0.1 \le I_o \le 3.0 \text{ A}$	_	±0.25	±0.5	$%{ m V_o}$
V _o Ripple/Noise	V_n	$V_{in} = V_{in} \min$, $I_o = 3.0 A$	_	±2	_	$%{ m V_o}$
Transient Response with C _o = 100μF	$ ext{t}_{ ext{tr}} ext{V}_{ ext{os}}$	50% load change $ m V_o$ over/undershoot	_	100 5.0	200 —	uSec %V _o
Efficiency	η	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		91 89 84 72		%
Switching Frequency	$f_{ m o}$	$\begin{array}{c} Over \ V_{in} \ and \ I_o \ ranges, \\ V_o = 3.3 \ V/5 \ V \\ V_o = 1.5 \ V \end{array}$	600 400 350	750 500 450	900 600 550	kHz
Shutdown Current	I_{sc}	$V_{in} = 15V$	_	100	_	μА
Quiescent Current	I_{nl}	$I_o = 0A$, $V_{in} = 10V$	_	10	_	mA
Absolute Maximum Operating Temperature Range	T_a	Over V _{in} range	-40	_	+85 (4)	°C
Thermal Resistance	θ_{ja}	Free Air Convection (40-60LFM)	_	30	_	°C/W
Storage Temperature	T_s	_	-40	_	+125	°C
Mechanical Shock		Per Mil-STD-883D, Method 2002.3, 1 msec, Half Sine, mounted to a fixture	_	500	_	G's
Mechanical Vibration		Per Mil-STD-883D, Method 2007.2, 20-2000 Hz,Soldered in a PC board		10	_	G's
Weight	_	_	_	6.5	_	grams

Notes: (1) The PT6300 Series requires a 100µF electrolytic or tantalum output capacitor for proper operation in all applications.

- (2) The ISR will operate to no load with reduced specifications.
- (3) Input voltage cannot exceed 30V when the inhibit function is used.
- See Thermal Derating charts.
- (5) Consult the related application note for guidance on adjusting the output voltage.

3 Amp Adjustable Positive Step-down Integrated Switching Regulators

Note A: Characteristic data listed in the above graphs has been developed from actual products tested at 25°C. This data is considered typical data for the ISR Note B: Thermal derating graphs are developed in free air convection cooling of 40-60 LFM. (See Thermal Application note.)


Adjusting the Output Voltage of Power Trends' Wide Input Range Bus ISRs

The output voltage of the Power Trends' Wide Input Range Series ISRs may be adjusted higher or lower than the factory trimmed pre-set voltage with the addition of a single external resistor. Table 1 accordingly gives the allowable adjustment range for each model for either series as V_a (min) and V_a (max).

Adjust Up: An increase in the output voltage is obtained by adding a resistor R2, between pin 12 (V_o adjust) and pins 5-8 (GND).

Adjust Down: Add a resistor (R1), between pin 12 (V_o adjust) and pins 9-11(V_{out}).

Figure 1

The values of (R1) [adjust down], and R2 [adjust up], can also be calculated using the following formulas. Refer to Figure 1 and Table 2 for both the placement and value of the required resistor; either (R1) or R2 as appropriate.

(R1) =
$$\frac{R_o (V_a - 1.25)}{V_o - V_a}$$
 kΩ

$$R2 = \frac{1.25 R_o}{V_0 - V_0} k\Omega$$

Where: V_o = Original output voltage

V_a = Adjusted output voltage

R = The resistance value from Table

R_o = The resistance value from Table 1

Table 1

ISR ADJUSTMENT RANGE AND FORMULA PARAMETERS						
1Adc Rated		PT6102	PT6101		PT6103	
2Adc Rated	PT6216	PT6213		PT6212	PT6214	
3Adc Rated	PT6314	PT6303		PT6302	PT6304	
Vo (nom)	1.5	3.3	5.0	5.0	12.0	
Va (min)	1.3	1.8	1.88	2.18	2.43	
Va (max)	1.9	6.07	11.25	8.5	22.12	
R_0 (k Ω)	8.25	66.5	150.0	90.9	243.0	

Notes:

- 1. Use only a single 1% resistor in either the (R1) or R2 location. Place the resistor as close to the ISR as possible.
- 2. Never connect capacitors from V_o adjust to either GND or V_{out} . Any capacitance added to the V_o adjust pin will affect the stability of the ISR.
- 3. Adjustments to the output voltage may place additional limits on the maximum and minimum input voltage for the part. The revised maximum and minimum input voltage limits must comply with the following requirements. The limits are model dependant.

PT6216/PT6314:

 V_{in} (max) = (10 x V_a)V or 17V, whichever is less.

 V_{in} (min) = 9.0V

All other models:

 V_{in} (max) = $(8 \times V_a)V$ or as specified.

 V_{in} (min) = $(V_a + 4)V$ or 9V, whichever is greater.

Application Notes continued

PT6100/6210/6300 Series

Table 2

2Adc Rated PT6216 PT6213 PT6212 PT6214 3Adc Rated PT6314 PT6303 PT6302 PT6304 V ₀ (nom) 1.5 3.3 5.0 5.0 12.0	ISR ADJUSTI	MENT RESISTO	OR VALUES			
38dc Rated PT6314 PT6303 PT6302 PT6304 No (norm) 1.5 3.3 5.0 5.0 12.0	1Adc Rated		PT6102	PT6101		PT6103
V ₆ (rem) 1.5 3.3 5.0 5.0 12.0 1.3 (2.1kΩ)	2Adc Rated	PT6216	PT6213		PT6212	PT6214
1.3	3Adc Rated	PT6314	PT6303		PT6302	PT6304
1.3 (2.1kΩ) 1.4 (12.4kΩ) 1.5 1.6 103.0kΩ 1.7 51.0kΩ 1.8 34.4kΩ (24.4)kΩ 1.9 25.8kΩ (30.9)kΩ (31.5)kΩ 2.0 (38.4)kΩ (57.5)kΩ 2.1 (47.1)kΩ (44.0)kΩ 2.2 (57.4)kΩ (50.9)kΩ (30.8)kΩ 2.3 (69.8)kΩ (58.3)kΩ (35.4)kΩ 2.4 (85.0)kΩ (66.3)kΩ (40.2)kΩ 2.5 (104.0)kΩ (75.0)kΩ (45.5)kΩ (32.0)kΩ 2.6 (128.0)kΩ (84.4)kΩ (51.1)kΩ (34.9)kΩ 2.7 (161.0)kΩ (94.6)kΩ (57.3)kΩ (47.3)kΩ (49.9)kΩ 2.8 (206.0)kΩ (106.0)kΩ (64.0)kΩ (40.9)kΩ 2.9 (274.0)kΩ (118.0)kΩ (79.5)kΩ (47.3)kΩ 3.0 (388.0)kΩ (131.0)kΩ (98.5)kΩ (53.8)kΩ 3.1 (615.0)kΩ (146.0)kΩ (88.5)kΩ (53.8)kΩ 3.2 (1300.0)kΩ (163.0)kΩ (100.0)kΩ (64.0)kΩ (64.3)kΩ 3.3 (181.0)kΩ (110.0)kΩ (98.5)kΩ (53.8)kΩ 3.3 (181.0)kΩ (110.0)kΩ (98.5)kΩ (63.8)kΩ 3.3 (181.0)kΩ (110.0)kΩ (98.5)kΩ (63.8)kΩ 3.3 (181.0)kΩ (110.0)kΩ (98.5)kΩ (63.8)kΩ 3.3 (181.0)kΩ (110.0)kΩ (67.5)kΩ 3.4 (83.1)kΩ (202.0)kΩ (136.0)kΩ (68.8)kΩ 3.5 416.0kΩ (225.0)kΩ (136.0)kΩ (68.8)kΩ 3.6 (227.0)kΩ (255.0)kΩ (136.0)kΩ (68.8)kΩ 3.7 (208.0)kΩ (283.0)kΩ (171.0)kΩ (77.5)kΩ 3.8 166.0kΩ (31.0)kΩ (193.0)kΩ (68.0)kΩ 3.7 (208.0)kΩ (283.0)kΩ (171.0)kΩ (77.5)kΩ 4.0 119.0kΩ (413.0)kΩ (250.0)kΩ (35.0)kΩ (68.8)kΩ 4.1 104.0)kΩ (475.0)kΩ (288.0)kΩ (77.5)kΩ 4.2 92.4kΩ (33.0)kΩ (250.0)kΩ (35.0)kΩ (68.5)kΩ 4.4 75.6kΩ (788.0)kΩ (279.0)kΩ (85.5)kΩ 4.5 69.3kΩ (75.0)kΩ (36.0)kΩ (97.5)kΩ 4.6 6.30kΩ (130.0)kΩ (105.0)kΩ (105.0)kΩ (110.0)kΩ 4.7 59.4kΩ (33.0)kΩ (35.0)kΩ (97.5)kΩ 4.9 52.0kΩ (78.0)kΩ (37.0)kΩ (100.0)kΩ 4.7 59.4kΩ (130.0)kΩ (105.0)kΩ (110.0)kΩ 4.7 59.4kΩ (130.0)kΩ (105.0)kΩ (110.0)kΩ 4.8 55.4kΩ (178.0)kΩ (105.0)kΩ (110.0)kΩ 4.7 59.4kΩ (130.0)kΩ (105.0)kΩ (110.0)kΩ 4.7 59.4kΩ (130.0)kΩ (105.0)kΩ (110.0)kΩ 4.8 55.4kΩ (178.0)kΩ (199.0)kΩ (110.0)kΩ 4.9 52.0kΩ (126.0)kΩ (170.0)kΩ (110.0)kΩ 4.7 59.4kΩ (130.0)kΩ (105.0)kΩ (110.0)kΩ 4.8 55.4kΩ (180.0)kΩ (140.0)kΩ (110.0)kΩ (110.0)kΩ 4.7 59.4kΩ (130.0)kΩ (105.0)kΩ (110.0)kΩ 4.8 55.4kΩ (180.0)kΩ (140.0)kΩ (110.0)kΩ (150.0)kΩ (15	V _o (nom)	1.5	3.3	5.0	5.0	12.0
1.4 (12.4kΩ) 1.5 1.6 103.0kΩ 1.7 51.6kΩ 1.8 34.4kΩ (24.4)kΩ 1.9 25.8kΩ (30.9)kΩ (31.5)kΩ 2.0 (38.4)kΩ (37.5)kΩ 2.1 (47.1)kΩ (50.9)kΩ (30.8)kΩ 2.2 (57.4)kΩ (50.9)kΩ (35.4)kΩ 2.3 (69.8)kΩ (58.3)kΩ (35.4)kΩ 2.4 (85.0)kΩ (66.3)kΩ (40.2)kΩ 2.5 (104.0)kΩ (75.0)kΩ (45.5)kΩ (32.0)kΩ 2.6 (128.0)kΩ (84.4)kΩ (51.1)kΩ (34.9)kΩ 2.7 (161.0)kΩ (94.6)kΩ (57.3)kΩ (37.9)kΩ 2.8 (206.0)kΩ (118.0)kΩ (71.4)kΩ (44.1)kΩ 3.0 (38.8)kΩ (131.0)kΩ (70.5)kΩ (64.0)kΩ (40.1)kΩ 3.0 (38.8)kΩ (131.0)kΩ (70.5)kΩ (30.8)kΩ (47.3)kΩ 3.1 (615.0)kΩ (146.0)kΩ (88.5)kΩ (50.5)kΩ 3.2 (130.0)kΩ (163.0)kΩ (100.0)kΩ (64.0)kΩ (65.3)kΩ 3.3 (181.0)kΩ (110.0)kΩ (67.3)kΩ (57.3)kΩ 3.3 (181.0)kΩ (110.0)kΩ (67.3)kΩ (60.8)kΩ 3.3 (181.0)kΩ (110.0)kΩ (67.3)kΩ (60.8)kΩ 3.3 (181.0)kΩ (110.0)kΩ (67.3)kΩ (60.8)kΩ 3.4 831.0kΩ (202.0)kΩ (122.0)kΩ (60.8)kΩ 3.5 44.60kΩ (225.0)kΩ (136.0)kΩ (60.8)kΩ 3.6 227.0kΩ (252.0)kΩ (136.0)kΩ (68.8)kΩ (60.8)kΩ 3.7 208.0kΩ (283.0)kΩ (171.0)kΩ (77.5)kΩ 3.8 166.0kΩ (319.0)kΩ (193.0)kΩ (68.8)kΩ 4.0 119.0kΩ (413.0)kΩ (290.0)kΩ (75.0)kΩ 4.0 119.0kΩ (413.0)kΩ (250.0)kΩ (83.5)kΩ (68.8)kΩ 4.1 104.0kΩ (47.5)kΩ (250.0)kΩ (150.0)kΩ (75.5)kΩ 4.2 92.4kΩ (33.0)kΩ (35.0)kΩ (95.0)kΩ (83.5)kΩ 4.1 104.0kΩ (47.5.0)kΩ (280.0)kΩ (87.7)kΩ 4.2 92.4kΩ (33.0)kΩ (35.0)kΩ (60.0)kΩ (75.5)kΩ 4.3 83.1kΩ (654.0)kΩ (250.0)kΩ (35.0)kΩ (97.5)kΩ 4.4 75.6kΩ (788.0)kΩ (477.0)kΩ (10.0)kΩ 4.5 69.3kΩ (77.0)kΩ (170.0)kΩ (77.0)kΩ (150.0)kΩ 4.6 63.9kΩ (126.0)kΩ (77.0)kΩ (100.0)kΩ 4.7 55.4kΩ (788.0)kΩ (477.0)kΩ (100.0)kΩ 4.8 55.4kΩ (788.0)kΩ (477.0)kΩ (100.0)kΩ 5.0 48.9kΩ (130.0)kΩ (150.0)kΩ (150.0)kΩ (150.0)kΩ 5.1 46.2kΩ 188.00kΩ 114.00kΩ (150.0)kΩ (150.0)kΩ 5.2 43.8kΩ 93.00kΩ (140.0)kΩ (150.0)kΩ (150.0)kΩ 5.3 41.6kΩ (250.0)kΩ (180.0)kΩ (150.0)kΩ (150.0)kΩ (150.0)kΩ 5.5 37.8kΩ 37.8kΩ 37.50kΩ (27.0)kΩ (150.0)kΩ (150.0)kΩ 5.6 36.1kΩ 31.00kΩ (27.0)kΩ (150.0)kΩ (150.0)k	V _a (req.d)					
1.5 1.6 103.0kΩ 1.7 51.6kΩ 1.8 34.4kΩ (24.4)kΩ 1.9 25.8kΩ (30.9)kΩ (31.5)kΩ 2.0 (38.4)kΩ (44.0)kΩ 2.1 (47.1)kΩ (44.0)kΩ 2.2 (57.4)kΩ (50.9)kΩ (35.4)kΩ (35.4)kΩ 2.3 (69.8)kΩ (58.3)kΩ (35.4)kΩ 2.4 (85.0)kΩ (66.3)kΩ (40.2)kΩ 2.5 (104.0)kΩ (75.0)kΩ (45.5)kΩ (32.0)kΩ 2.6 (128.0)kΩ (84.4)kΩ (51.1)kΩ (34.9)kΩ 2.7 (161.0)kΩ (94.6)kΩ (57.3)kΩ (57.3)kΩ (37.9)kΩ 2.8 (206.0)kΩ (118.0)kΩ (71.4)kΩ (44.1)kΩ 3.0 (38.8)kΩ (118.0)kΩ (71.4)kΩ (47.3)kΩ 3.1 (615.0)kΩ (146.0)kΩ (88.5)kΩ (50.5)kΩ 3.2 (130.0)kΩ (163.0)kΩ (163.0)kΩ (160.0)kΩ (68.5)kΩ (53.8)kΩ 3.3 (181.0)kΩ (110.0)kΩ (57.3)kΩ (68.8)kΩ 3.5 416.0kΩ (225.0)kΩ (136.0)kΩ (163.0)kΩ (171.0)kΩ (68.0)kΩ 3.7 208.0kΩ (228.0)kΩ (153.0)kΩ (68.0)kΩ (71.5)kΩ (48.3)kΩ (48.3)kΩ (57.3)kΩ (68.3)kΩ (48.3)kΩ (48.3)kΩ (50.5)kΩ 3.5 416.0kΩ (225.0)kΩ (153.0)kΩ (68.0)kΩ (68.0)kΩ 3.7 208.0kΩ (283.0)kΩ (171.0)kΩ (77.5)kΩ (47.3)kΩ 4.0 119.0kΩ (413.0)kΩ (290.0)kΩ (120.0)kΩ (68.0)kΩ (48.3)kΩ (49.2)kΩ (50.5)kΩ 3.8 166.00kΩ (319.0)kΩ (171.0)kΩ (77.5)kΩ (47.5)kΩ (48.3)kΩ (49.2)kΩ (57.5)kΩ (49.2)kΩ (68.3)kΩ (79.5)kΩ 4.0 119.0kΩ (413.0)kΩ (250.0)kΩ (83.5)kΩ (75.0)kΩ 4.1 104.0kΩ (47.0)kΩ (280.0)kΩ (280.0)kΩ (170.0)kΩ (47.1)kΩ (41.1)kΩ (79.5)kΩ 4.1 104.0kΩ (47.0)kΩ (280.0)kΩ (280.0)kΩ (33.5)0kΩ (68.0)kΩ (67.7)kΩ (48.3)kΩ (50.3)kΩ (68.0)kΩ (79.5)kΩ (49.3)kΩ (79.5)kΩ (40.2)kΩ (79.5)kΩ (40.2)kΩ (60.8)kΩ (60.8)	1.3	$(2.1k\Omega)$				
1.6 103.0kΩ 1.7 \$1.6kΩ 1.8 34.4kΩ (24.4)kΩ 1.9 25.8kΩ (30.9)kΩ (31.5)kΩ 2.0 (38.4)kΩ (37.5)kΩ 2.1 (47.1)kΩ (44.0)kΩ 2.2 (57.4)kΩ (50.9)kΩ (30.8)kΩ 2.3 (69.8)kΩ (68.3)kΩ (35.4)kΩ (40.2)kΩ 2.4 (85.0)kΩ (66.3)kΩ (45.5)kΩ (32.0)kΩ 2.6 (128.0)kΩ (84.4)kΩ (51.1)kΩ (34.9)kΩ 2.6 (128.0)kΩ (84.4)kΩ (51.1)kΩ (34.9)kΩ 2.7 (161.0)kΩ (94.6)kΩ (57.3)kΩ (37.9)kΩ 2.8 (206.0)kΩ (106.0)kΩ (64.0)kΩ (47.3)kΩ 2.9 (274.0)kΩ (118.0)kΩ (71.4)kΩ (47.3)kΩ 3.0 (388.0)kΩ (131.0)kΩ (71.4)kΩ (47.3)kΩ 3.1 (615.0)kΩ (146.0)kΩ (88.5)kΩ (50.5)kΩ 3.2 (130.0)kΩ (161.0)kΩ (8	1.4	$(12.4k\Omega)$				
1.7	1.5					
1.8 34.4kΩ (24.4)kΩ 1.9 25.8kΩ (30.9)kΩ (31.5)kΩ 2.0 (38.4)kΩ (37.5)kΩ 2.1 (47.1)kΩ (44.0)kΩ 2.2 (57.4)kΩ (50.9)kΩ (30.8)kΩ 2.3 (69.8)kΩ (58.3)kΩ (35.4)kΩ 2.4 (85.0)kΩ (66.3)kΩ (40.2)kΩ 2.5 (104.0)kΩ (75.0)kΩ (45.5)kΩ (32.0)kΩ 2.6 (128.0)kΩ (84.4)kΩ (51.1)kΩ (37.9)kΩ 2.7 (161.0)kΩ (94.6)kΩ (57.3)kΩ (37.9)kΩ 2.8 (206.0)kΩ (106.0)kΩ (64.0)kΩ (40.9)kΩ 2.9 (274.0)kΩ (118.0)kΩ (71.4)kΩ (41.1)kΩ 3.0 (388.0)kΩ (131.0)kΩ (79.5)kΩ (47.3)kΩ 3.1 (615.0)kΩ (146.0)kΩ (88.5)kΩ (50.5)kΩ 3.2 (130.0)kΩ (166.0)kΩ (88.5)kΩ (53.8)kΩ 3.3 (181.0)kΩ (92.5)kΩ (186.0)kΩ (57.3)kΩ <td>1.6</td> <td>$103.0 \mathrm{k}\Omega$</td> <td></td> <td></td> <td></td> <td></td>	1.6	$103.0 \mathrm{k}\Omega$				
1.9 25.8kΩ (30.9)kΩ (31.5)kΩ 2.0 (38.4)kΩ (37.5)kΩ 2.1 (47.1)kΩ (44.0)kΩ 2.2 (57.4)kΩ (50.9)kΩ (30.8)kΩ 2.3 (69.8)kΩ (58.3)kΩ (35.4)kΩ 2.4 (85.0)kΩ (66.3)kΩ (40.2)kΩ 2.5 (104.0)kΩ (75.0)kΩ (45.5)kΩ (32.0)kΩ 2.6 (128.0)kΩ (84.4)kΩ (51.1)kΩ (34.9)kΩ 2.7 (161.0)kΩ (94.6)kΩ (57.3)kΩ (37.9)kΩ 2.8 (206.0)kΩ (106.0)kΩ (64.0)kΩ (49.9)kΩ 2.9 (274.0)kΩ (118.0)kΩ (71.4)kΩ (41.1)kΩ 3.0 (388.0)kΩ (131.0)kΩ (79.5)kΩ (47.3)kΩ 3.1 (615.0)kΩ (146.0)kΩ (88.5)kΩ (53.8)kΩ 3.2 (1300.0)kΩ (163.0)kΩ (98.5)kΩ (53.8)kΩ 3.3 (181.0)kΩ (71.0)kΩ (77.5)kΩ 3.5 416.0kΩ (225.0)kΩ (136.0)kΩ	1.7	51.6kΩ				
2.0 (38.4)kΩ (37.5)kΩ 2.1 (47.1)kΩ (44.0)kΩ 2.2 (57.4)kΩ (30.9)kΩ (30.8)kΩ 2.3 (69.8)kΩ (58.3)kΩ (35.4)kΩ 2.4 (85.0)kΩ (67.0)kΩ (45.5)kΩ (32.0)kΩ 2.5 (1040)kΩ (75.0)kΩ (45.5)kΩ (32.0)kΩ 2.6 (128.0)kΩ (84.4)kΩ (51.1)kΩ (34.9)kΩ 2.7 (161.0)kΩ (94.6)kΩ (57.3)kΩ (37.9)kΩ 2.8 (206.0)kΩ (106.0)kΩ (64.0)kΩ (40.9)kΩ 2.9 (274.0)kΩ (118.0)kΩ (79.5)kΩ (47.3)kΩ 3.0 (38.0)kΩ (131.0)kΩ (79.5)kΩ (47.3)kΩ 3.1 (615.0)kΩ (163.0)kΩ (88.5)kΩ (53.8)kΩ 3.2 (130.0)kΩ (163.0)kΩ (88.5)kΩ (53.8)kΩ 3.3 (181.0)kΩ (110.0)kΩ (57.3)kΩ 3.4 831.0kΩ (202.0)kΩ (122.0)kΩ (68.0)kΩ 3.5 416.0kΩ (25.0)kΩ (136.0)kΩ (64.0)kΩ 3.6 227.	1.8	$34.4k\Omega$	(24.4) k Ω			
2.1 (47.1)kΩ (44.0)kΩ (30.8)kΩ (30.8)kΩ (50.9)kΩ (30.8)kΩ (35.4)kΩ (50.9)kΩ (35.4)kΩ (50.9)kΩ (35.4)kΩ (50.9)kΩ (35.4)kΩ (50.9)kΩ (66.3)kΩ (40.2)kΩ (50.9)kΩ (66.3)kΩ (40.2)kΩ (50.4)kΩ (50.4)	1.9	$25.8 \mathrm{k}\Omega$	(30.9) k Ω	(31.5) k Ω		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.0		(38.4)kΩ	(37.5)kΩ		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.1		(47.1)kΩ	(44.0)kΩ		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.2		(57.4)kΩ	(50.9)kΩ	(30.8)kΩ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.3					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.4					
2.6 (128.0)kΩ (84.4)kΩ (51.1)kΩ (34.9)kΩ 2.7 (161.0)kΩ (94.6)kΩ (57.3)kΩ (37.9)kΩ 2.8 (206.0)kΩ (106.0)kΩ (64.0)kΩ (40.9)kΩ 2.9 (274.0kΩ (118.0)kΩ (71.4)kΩ (44.1)kΩ 3.0 (388.0)kΩ (131.0)kΩ (79.5)kΩ (47.3)kΩ 3.1 (615.0)kΩ (146.0)kΩ (88.5)kΩ (50.5)kΩ 3.2 (1300.0)kΩ (163.0)kΩ (98.5)kΩ (57.3)kΩ 3.4 831.0kΩ (202.0)kΩ (110.0)kΩ (60.8)kΩ 3.5 416.0kΩ (225.0)kΩ (136.0)kΩ (64.3)kΩ 3.6 227.0kΩ (252.0)kΩ (153.0)kΩ (68.0)kΩ 3.7 208.0kΩ (283.0)kΩ (171.0)kΩ (71.7)kΩ 3.8 166.0kΩ (319.0)kΩ (193.0)kΩ (75.6)kΩ 4.0 119.0kΩ (413.0)kΩ (219.0)kΩ (75.5)kΩ 4.1 104.0kΩ (475.0)kΩ (288.0)kΩ (87.7)kΩ <tr< td=""><td></td><td></td><td>. ,</td><td></td><td></td><td>(32.0)kΩ</td></tr<>			. ,			(32.0)kΩ
2.7 (161.0)kΩ (94.6)kΩ (57.3)kΩ (37.9)kΩ (28.8) (206.0)kΩ (106.0)kΩ (64.0)kΩ (40.9)kΩ (40.9)kΩ (2.9) (274.0 kΩ (118.0)kΩ (71.4)kΩ (41.1)kΩ (44.1)kΩ (45.0						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
2.9 $(274.0k\Omega)$ $(118.0)k\Omega$ $(71.4)k\Omega$ $(44.1)k\Omega$ 3.0 $(388.0)k\Omega$ $(131.0)k\Omega$ $(79.5)k\Omega$ $(47.3)k\Omega$ 3.1 $(615.0)k\Omega$ $(146.0)k\Omega$ $(88.5)k\Omega$ $(50.5)k\Omega$ 3.2 $(1300.0)k\Omega$ $(163.0)k\Omega$ $(98.5)k\Omega$ $(53.8)k\Omega$ 3.3 $(181.0)k\Omega$ $(110.0)k\Omega$ $(57.3)k\Omega$ 3.4 $831.0k\Omega$ $(202.0)k\Omega$ $(122.0)k\Omega$ $(60.8)k\Omega$ 3.5 $416.0k\Omega$ $(225.0)k\Omega$ $(136.0)k\Omega$ $(68.0)k\Omega$ 3.6 $227.0k\Omega$ $(252.0)k\Omega$ $(153.0)k\Omega$ $(68.0)k\Omega$ 3.7 $208.0k\Omega$ $(283.0)k\Omega$ $(171.0)k\Omega$ $(71.7)k\Omega$ 3.8 $166.0k\Omega$ $(319.0)k\Omega$ $(193.0)k\Omega$ $(75.6)k\Omega$ 4.0 $119.0k\Omega$ $(413.0)k\Omega$ $(219.0)k\Omega$ $(75.6)k\Omega$ 4.1 $104.0k\Omega$ $(475.0)k\Omega$ $(288.0)k\Omega$ $(87.7)k\Omega$ 4.2 $92.4k\Omega$ $(533.0)k\Omega$ $(335.0)k\Omega$ $(87.7)k\Omega$ 4.3 $83.1k\Omega$ (654.0)						
3.0 (388.0) kΩ (131.0) kΩ (79.5) kΩ (47.3) kΩ 3.1 (615.0) kΩ (146.0) kΩ (88.5) kΩ (50.5) kΩ 3.2 (1300.0) kΩ (163.0) kΩ (98.5) kΩ (53.8) kΩ 3.3 (181.0) kΩ (110.0) kΩ (57.3) kΩ 3.4 831.0 kΩ (202.0) kΩ (122.0) kΩ (60.8) kΩ 3.5 416.0 kΩ (225.0) kΩ (136.0) kΩ (64.3) kΩ 3.6 227.0 kΩ (252.0) kΩ (153.0) kΩ (68.0) kΩ 3.7 208.0 kΩ (283.0) kΩ (171.0) kΩ (71.7) kΩ 3.8 166.0 kΩ (319.0) kΩ (193.0) kΩ (75.6) kΩ 3.9 139.0 kΩ (361.0) kΩ (219.0) kΩ (79.5) kΩ 4.0 119.0 kΩ (413.0) kΩ (250.0) kΩ (83.5) kQ 4.1 104.0 kΩ (475.0) kΩ (288.0) kΩ (87.7) kQ 4.2 92.4 kΩ (533.0) kΩ (335.0) kΩ (353.0) kΩ (370.0) kΩ (96.0) kΩ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
3.1 (615.0)kΩ (146.0)kΩ (88.5)kΩ (50.5)kΩ 3.2 (1300.0)kΩ (163.0)kΩ (98.5)kΩ (53.8)kΩ 3.3 (181.0)kΩ (110.0)kΩ (57.3)kΩ 3.4 831.0kΩ (202.0)kΩ (122.0)kΩ (60.8)kΩ 3.5 416.0kΩ (225.0)kΩ (136.0)kΩ (64.3)kΩ 3.6 227.0kΩ (252.0)kΩ (153.0)kΩ (68.0)kΩ 3.7 208.0kΩ (283.0)kΩ (171.0)kΩ (71.7)kΩ 3.8 166.0kΩ (319.0)kΩ (193.0)kΩ (75.6)kΩ 3.9 139.0kΩ (361.0)kΩ (219.0)kΩ (79.5)kΩ 4.0 119.0kΩ (413.0)kΩ (250.0)kΩ (83.5)kΩ 4.1 104.0kΩ (475.0)kΩ (288.0)kΩ (87.7)kΩ 4.2 92.4kΩ (533.0)kΩ (335.0)kΩ (91.9)kΩ 4.3 83.1kΩ (654.0)kΩ (396.0)kΩ (96.3)kΩ 4.4 75.6kΩ (788.0)kΩ (477.0)kΩ (101.0)kΩ 4.5						
3.2 (1300.0)kΩ (163.0)kΩ (98.5)kΩ (53.8)kΩ 3.3 (181.0)kΩ (110.0)kΩ (57.3)kΩ 3.4 831.0kΩ (202.0)kΩ (122.0)kΩ (60.8)kΩ 3.5 416.0kΩ (225.0)kΩ (136.0)kΩ (64.3)kΩ 3.6 227.0kΩ (252.0)kΩ (153.0)kΩ (68.0)kΩ 3.7 208.0kΩ (283.0)kΩ (171.0)kΩ (71.7)kΩ 3.8 166.0kΩ (319.0)kΩ (193.0)kΩ (75.6)kΩ 4.0 119.0kΩ (413.0)kΩ (219.0)kΩ (79.5)kΩ 4.1 104.0kΩ (475.0)kΩ (288.0)kΩ (87.7)kΩ 4.2 92.4kΩ (533.0)kΩ (335.0)kΩ (91.9)kΩ 4.3 83.1kΩ (654.0)kΩ (396.0)kΩ (96.3)kΩ 4.4 75.6kΩ (788.0)kΩ (477.0)kΩ (101.0)kΩ 4.5 69.3kΩ (975.0)kΩ (591.0)kΩ (105.0)kΩ 4.6 63.9kΩ (126.0)kΩ (761.0)kΩ (105.0)kΩ 4.7			` '			
3.3 (181.0)kΩ (110.0)kΩ (57.3)kΩ (60.8)kΩ (202.0)kΩ (122.0)kΩ (60.8)kΩ (60.8)kΩ (225.0)kΩ (136.0)kΩ (64.3)kΩ (64.3)kΩ (250.0)kΩ (153.0)kΩ (68.0)kΩ (71.7)kΩ (71.7)k						
3.4 831.0kΩ $(202.0)kΩ$ $(122.0)kΩ$ $(60.8)kΩ$ 3.5 416.0kΩ $(225.0)kΩ$ $(136.0)kΩ$ $(64.3)kΩ$ 3.6 227.0kΩ $(252.0)kΩ$ $(153.0)kΩ$ $(68.0)kΩ$ 3.7 208.0kΩ $(283.0)kΩ$ $(171.0)kΩ$ $(71.7)kΩ$ 3.8 166.0kΩ $(319.0)kΩ$ $(193.0)kΩ$ $(75.6)kΩ$ 3.9 139.0kΩ $(361.0)kΩ$ $(219.0)kΩ$ $(79.5)kΩ$ 4.0 119.0kΩ $(413.0)kΩ$ $(250.0)kΩ$ $(83.5)kΩ$ 4.1 104.0kΩ $(475.0)kΩ$ $(288.0)kΩ$ $(87.7)kΩ$ 4.2 92.4kΩ $(533.0)kΩ$ $(335.0)kΩ$ $(91.9)kΩ$ 4.3 83.1kΩ $(654.0)kΩ$ $(396.0)kΩ$ $(96.3)kΩ$ 4.4 75.6kΩ $(788.0)kΩ$ $(477.0)kΩ$ $(101.0)kΩ$ 4.5 69.3kΩ $(975.0)kΩ$ $(591.0)kΩ$ $(105.0)kΩ$ 4.6 63.9kΩ $(1260.0)kΩ$ $(761.0)kΩ$ $(105.0)kΩ$ 4.7 59.4kΩ $(1730.0)kΩ$ $(1050.0)kΩ$ $(115.0)kΩ$ 5.0 48.9kΩ <			(22 2 212)222			
3.5 $416.0 k\Omega$ $(225.0) k\Omega$ $(136.0) k\Omega$ $(64.3) k\Omega$ 3.6 $227.0 k\Omega$ $(252.0) k\Omega$ $(153.0) k\Omega$ $(68.0) k\Omega$ 3.7 $208.0 k\Omega$ $(283.0) k\Omega$ $(171.0) k\Omega$ $(71.7) k\Omega$ 3.8 $166.0 k\Omega$ $(319.0) k\Omega$ $(193.0) k\Omega$ $(75.6) k\Omega$ 3.9 $139.0 k\Omega$ $(361.0) k\Omega$ $(219.0) k\Omega$ $(79.5) k\Omega$ 4.0 $119.0 k\Omega$ $(413.0) k\Omega$ $(250.0) k\Omega$ $(83.5) k\Omega$ 4.1 $104.0 k\Omega$ $(475.0) k\Omega$ $(288.0) k\Omega$ $(87.7) k\Omega$ 4.2 $92.4 k\Omega$ $(533.0) k\Omega$ $(335.0) k\Omega$ $(91.9) k\Omega$ 4.3 $83.1 k\Omega$ $(654.0) k\Omega$ $(396.0) k\Omega$ $(96.3) k\Omega$ 4.4 $75.6 k\Omega$ $(788.0) k\Omega$ $(477.0) k\Omega$ $(101.0) k\Omega$ 4.5 $69.3 k\Omega$ $(975.0) k\Omega$ $(591.0) k\Omega$ $(105.0) k\Omega$ 4.6 $63.9 k\Omega$ $(1260.0) k\Omega$ $(761.0) k\Omega$ $(105.0) k\Omega$ 4.7 $59.4 k\Omega$ $(1730.0) k\Omega$ $(1050.0) k\Omega$ $(110.0) k\Omega$ 4.8 $55.4 k\Omega$ $(1730.0) k\Omega$ $(1050.0) k\Omega$ $(120.0) k\Omega$ 5.0 $48.9 k\Omega$ $(130.0) k\Omega$ $(147.0) k\Omega$ $(130.0) k\Omega$ 5.1 $46.2 k\Omega$ $1880.0 k\Omega$ $1140.0 k\Omega$ $(136.0) k\Omega$ 5.2 $43.8 k\Omega$ $937.0 k\Omega$ $568.0 k\Omega$ $(141.0) k\Omega$ 5.3 $41.6 k\Omega$ $625.0 k\Omega$ $379.0 k\Omega$ $(147.0) k\Omega$ 5.4 $39.6 k\Omega$ $469.0 k\Omega$ $284.0 k\Omega$ $(153.0) k\Omega$ 5.5 $37.8 k\Omega$ $375.0 k\Omega$ $227.0 k\Omega$ $(159.0) k\Omega$ 5.6 $36.1 k\Omega$ $313.0 k\Omega$ $189.0 k\Omega$ $(165.0) k\Omega$ 5.7 $34.6 k\Omega$ $268.0 k\Omega$ $162.0 k\Omega$ $(172.0) k\Omega$ 5.8 $33.3 k\Omega$ $234.0 k\Omega$ $126.0 k\Omega$ $(172.0) k\Omega$			831.0kO			
3.6 227.0kΩ $(252.0)kΩ$ $(153.0)kΩ$ $(68.0)kΩ$ 3.7 208.0kΩ $(283.0)kΩ$ $(171.0)kΩ$ $(71.7)kΩ$ 3.8 166.0kΩ $(319.0)kΩ$ $(193.0)kΩ$ $(75.6)kΩ$ 3.9 139.0kΩ $(361.0)kΩ$ $(219.0)kΩ$ $(79.5)kΩ$ 4.0 119.0kΩ $(413.0)kΩ$ $(250.0)kΩ$ $(83.5)kΩ$ 4.1 104.0kΩ $(475.0)kΩ$ $(288.0)kΩ$ $(87.7)kΩ$ 4.2 92.4kΩ $(533.0)kΩ$ $(396.0)kΩ$ $(91.9)kΩ$ 4.3 83.1kΩ $(654.0)kΩ$ $(396.0)kΩ$ $(96.3)kΩ$ 4.4 75.6kΩ $(788.0)kΩ$ $(477.0)kΩ$ $(101.0)kΩ$ 4.5 69.3kΩ $(975.0)kΩ$ $(591.0)kΩ$ $(105.0)kΩ$ 4.6 63.9kΩ $(1260.0)kΩ$ $(761.0)kΩ$ $(105.0)kΩ$ 4.7 59.4kΩ $(1730.0)kΩ$ $(105.0)kΩ$ $(115.0)kΩ$ 4.8 55.4kΩ $(1610.0)kΩ$ $(125.0)kΩ$ 5.0 48.9kΩ $(130.0)kΩ$ $(152.0)kΩ$ <						
3.7 208.0kΩ $(283.0)kΩ$ $(171.0)kΩ$ $(71.7)kΩ$ 3.8 166.0kΩ $(319.0)kΩ$ $(193.0)kΩ$ $(75.6)kΩ$ 3.9 139.0kΩ $(361.0)kΩ$ $(219.0)kΩ$ $(79.5)kΩ$ 4.0 119.0kΩ $(413.0)kΩ$ $(250.0)kΩ$ $(83.5)kΩ$ 4.1 104.0kΩ $(475.0)kΩ$ $(288.0)kΩ$ $(87.7)kΩ$ 4.2 92.4kΩ $(533.0)kΩ$ $(335.0)kΩ$ $(91.9)kΩ$ 4.3 83.1kΩ $(654.0)kΩ$ $(396.0)kΩ$ $(96.3)kΩ$ 4.4 75.6kΩ $(788.0)kΩ$ $(477.0)kΩ$ $(101.0)kΩ$ 4.5 69.3kΩ $(975.0)kΩ$ $(591.0)kΩ$ $(105.0)kΩ$ 4.6 63.9kΩ $(1260.0)kΩ$ $(761.0)kΩ$ $(110.0)kΩ$ 4.7 59.4kΩ $(1730.0)kΩ$ $(1050.0)kΩ$ $(115.0)kΩ$ 4.8 55.4kΩ $(1610.0)kΩ$ $(125.0)kΩ$ 5.0 48.9kΩ $(130.0)kΩ$ 5.1 46.2kΩ 1880.0kΩ 1140.0kΩ $(136.0)kΩ$ 5.2 43.8kΩ 937.0kΩ 568.0kΩ $(147.0)kΩ$						
3.8 $166.0 k\Omega$ $(319.0) k\Omega$ $(193.0) k\Omega$ $(75.6) k\Omega$ 3.9 $139.0 k\Omega$ $(361.0) k\Omega$ $(219.0) k\Omega$ $(79.5) k\Omega$ 4.0 $119.0 k\Omega$ $(413.0) k\Omega$ $(250.0) k\Omega$ $(83.5) k\Omega$ 4.1 $104.0 k\Omega$ $(475.0) k\Omega$ $(288.0) k\Omega$ $(87.7) k\Omega$ 4.2 $92.4 k\Omega$ $(533.0) k\Omega$ $(335.0) k\Omega$ $(91.9) k\Omega$ 4.3 $83.1 k\Omega$ $(654.0) k\Omega$ $(396.0) k\Omega$ $(96.3) k\Omega$ 4.4 $75.6 k\Omega$ $(788.0) k\Omega$ $(477.0) k\Omega$ $(101.0) k\Omega$ 4.5 $69.3 k\Omega$ $(975.0) k\Omega$ $(591.0) k\Omega$ $(105.0) k\Omega$ 4.6 $63.9 k\Omega$ $(1260.0) k\Omega$ $(761.0) k\Omega$ $(110.0) k\Omega$ 4.7 $59.4 k\Omega$ $(1730.0) k\Omega$ $(1050.0) k\Omega$ $(115.0) k\Omega$ 4.8 $55.4 k\Omega$ $(1730.0) k\Omega$ $(1610.0) k\Omega$ $(125.0) k\Omega$ 5.0 $48.9 k\Omega$ $(130.0) k\Omega$ $(125.0) k\Omega$ 5.1 $46.2 k\Omega$ $1880.0 k\Omega$ $1140.0 k\Omega$ $(136.0) k\Omega$ 5.2 $43.8 k\Omega$ $937.0 k\Omega$ $568.0 k\Omega$ $(147.0) k\Omega$ <						
3.9 $139.0 kΩ$ $(361.0) kΩ$ $(219.0) kΩ$ $(79.5) kΩ$ 4.0 $119.0 kΩ$ $(413.0) kΩ$ $(250.0) kΩ$ $(83.5) kΩ$ 4.1 $104.0 kΩ$ $(475.0) kΩ$ $(288.0) kΩ$ $(87.7) kΩ$ 4.2 $92.4 kΩ$ $(533.0) kΩ$ $(335.0) kΩ$ $(91.9) kΩ$ 4.3 $83.1 kΩ$ $(654.0) kΩ$ $(396.0) kΩ$ $(96.3) kΩ$ 4.4 $75.6 kΩ$ $(788.0) kΩ$ $(477.0) kΩ$ $(101.0) kΩ$ 4.5 $69.3 kΩ$ $(975.0) kΩ$ $(591.0) kΩ$ $(105.0) kΩ$ 4.6 $63.9 kΩ$ $(1260.0) kΩ$ $(761.0) kΩ$ $(110.0) kΩ$ 4.7 $59.4 kΩ$ $(1730.0) kΩ$ $(1050.0) kΩ$ $(115.0) kΩ$ 4.8 $55.4 kΩ$ $(1730.0) kΩ$ $(1610.0) kΩ$ $(125.0) kΩ$ 4.9 $52.0 kΩ$ $(1610.0) kΩ$ $(125.0) kΩ$ 5.0 $48.9 kΩ$ $(130.0) kΩ$ $1140.0 kΩ$ $(136.0) kΩ$ 5.1 $46.2 kΩ$ $1880.0 kΩ$ $1140.0 kΩ$ $(136.0) kΩ$ 5.2 $43.8 kΩ$ $937.0 kΩ$ $568.0 kΩ$ $(141.0) kΩ$ 5.3 $41.6 kΩ$ $625.0 kΩ$ $379.0 kΩ$ $(147.0) kΩ$ 5.4 $39.6 kΩ$ $469.0 kΩ$ $284.0 kΩ$ $(153.0) kΩ$ 5.5 $37.8 kΩ$ $375.0 kΩ$ $227.0 kΩ$ $(159.0) kΩ$ 5.6 $36.1 kΩ$ $313.0 kΩ$ $189.0 kΩ$ $(165.0) kΩ$ 5.7 $34.6 kΩ$ $268.0 kΩ$ $142.0 kΩ$ $(172.0) kΩ$ 5.8 $33.3 kΩ$ $234.0 kΩ$ $142.0 kΩ$ $(172.0) kΩ$ 5.9 $32.0 kΩ$ $208.0 kΩ$ $126.0 kΩ$ $(178.0) kΩ$						
4.0 119.0kΩ (413.0) kΩ (250.0) kΩ (83.5) kΩ 4.1 104.0kΩ (475.0) kΩ (288.0) kΩ (87.7) kΩ 4.2 92.4kΩ (533.0) kΩ (335.0) kΩ (91.9) kΩ 4.3 83.1kΩ (654.0) kΩ (396.0) kΩ (96.3) kΩ 4.4 75.6kΩ (788.0) kΩ (477.0) kΩ (101.0) kΩ 4.5 69.3kΩ (975.0) kΩ (591.0) kΩ (105.0) kΩ 4.6 63.9kΩ (1260.0) kΩ (761.0) kΩ (110.0) kΩ 4.7 59.4kΩ (1730.0) kΩ (1050.0) kΩ (115.0) kΩ 4.8 55.4kΩ (1610.0) kΩ (125.0) kΩ 5.0 48.9kΩ (130.0) kΩ (125.0) kΩ 5.1 46.2kΩ 1880.0kΩ 1140.0kΩ (136.0) kΩ 5.2 43.8kΩ 937.0kΩ 568.0kΩ (141.0) kΩ 5.3 41.6kΩ 625.0kΩ 379.0kΩ (147.0) kΩ 5.4 39.6kΩ 469.0kΩ 284.0kΩ (153.0) kΩ 5.5 37.8kΩ 375.0kΩ 227.0kΩ (159.0) kΩ <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<>						
4.1 $104.0 k\Omega$ $(475.0) k\Omega$ $(288.0) k\Omega$ $(87.7) k\Omega$ 4.2 $92.4 k\Omega$ $(533.0) k\Omega$ $(335.0) k\Omega$ $(91.9) k\Omega$ 4.3 $83.1 k\Omega$ $(654.0) k\Omega$ $(396.0) k\Omega$ $(96.3) k\Omega$ 4.4 $75.6 k\Omega$ $(788.0) k\Omega$ $(477.0) k\Omega$ $(101.0) k\Omega$ 4.5 $69.3 k\Omega$ $(975.0) k\Omega$ $(591.0) k\Omega$ $(105.0) k\Omega$ 4.6 $63.9 k\Omega$ $(1260.0) k\Omega$ $(761.0) k\Omega$ $(110.0) k\Omega$ 4.7 $59.4 k\Omega$ $(1730.0) k\Omega$ $(1050.0) k\Omega$ $(115.0) k\Omega$ 4.8 $55.4 k\Omega$ $(1610.0) k\Omega$ $(125.0) k\Omega$ 4.9 $52.0 k\Omega$ $(125.0) k\Omega$ $(125.0) k\Omega$ 5.0 $48.9 k\Omega$ $(130.0) k\Omega$ $(130.0) k\Omega$ 5.1 $46.2 k\Omega$ $1880.0 k\Omega$ $1140.0 k\Omega$ $(136.0) k\Omega$ 5.2 $43.8 k\Omega$ $937.0 k\Omega$ $568.0 k\Omega$ $(141.0) k\Omega$ 5.3 $41.6 k\Omega$ $625.0 k\Omega$ $379.0 k\Omega$ $(147.0) k\Omega$ 5.4 $39.6 k\Omega$ $469.0 k\Omega$ $284.0 k\Omega$ $(153.0) k\Omega$ 5.5 $37.8 k\Omega$ $375.0 $						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
4.3 83.1kΩ (654.0)kΩ (396.0)kΩ (96.3)kΩ 4.4 75.6kΩ (788.0)kΩ (477.0)kΩ (101.0)kΩ 4.5 69.3kΩ (975.0)kΩ (591.0)kΩ (105.0)kΩ 4.6 63.9kΩ (1260.0)kΩ (761.0)kΩ (110.0)kΩ 4.7 59.4kΩ (1730.0)kΩ (1050.0)kΩ (115.0)kΩ 4.8 55.4kΩ (1610.0)kΩ (125.0)kΩ (125.0)kΩ (125.0)kΩ (125.0)kΩ (130.0)kΩ (130.0)kΩ (130.0)kΩ (130.0)kΩ (150.0)kΩ (140.0)kΩ (130.0)kΩ 5.0 48.9kΩ (130.0)kΩ (130.0)kΩ (130.0)kΩ (130.0)kΩ 5.2 43.8kΩ 937.0kΩ 568.0kΩ (141.0)kΩ 5.3 41.6kΩ 625.0kΩ 379.0kΩ (147.0)kΩ 5.4 39.6kΩ 469.0kΩ 284.0kΩ (153.0)kΩ 5.5 37.8kΩ 375.0kΩ 227.0kΩ (159.0)kΩ 5.6 36.1kΩ 313.0kΩ 189.0kΩ (165.0)kΩ 5.7 34.6kΩ 268.0kΩ 162.0kΩ (172.0)kΩ 5.8 33.3kΩ 234.0kΩ 142.0kΩ (178.0)kΩ 5.9 32.0kΩ 208.0kΩ 126.0kΩ (185.0)kΩ (185.0)kΩ 5.9 32.0kΩ 208.0kΩ 126.0kΩ (185.0)kΩ						
4.4 75.6kΩ (788.0) kΩ (477.0) kΩ (101.0) kΩ 4.5 69.3kΩ (975.0) kΩ (591.0) kΩ (105.0) kΩ 4.6 63.9kΩ (1260.0) kΩ (761.0) kΩ (110.0) kΩ 4.7 59.4kΩ (1730.0) kΩ (1050.0) kΩ (115.0) kΩ 4.8 55.4kΩ (1610.0) kΩ (120.0) kΩ 4.9 52.0kΩ (125.0) kΩ 5.0 48.9kΩ (130.0) kΩ 5.1 46.2kΩ 1880.0kΩ 1140.0kΩ (136.0) kΩ 5.2 43.8kΩ 937.0kΩ 568.0kΩ (141.0) kΩ 5.3 41.6kΩ 625.0kΩ 379.0kΩ (147.0) kΩ 5.4 39.6kΩ 469.0kΩ 284.0kΩ (153.0) kΩ 5.5 37.8kΩ 375.0kΩ 227.0kΩ (159.0) kΩ 5.6 36.1kΩ 313.0kΩ 189.0kΩ (165.0) kΩ 5.7 34.6kΩ 268.0kΩ 162.0kΩ (172.0) kΩ 5.8 33.3kΩ 234.0kΩ 142.0kΩ (178.0) kΩ 5.9 32.0kΩ 208.0kΩ 126.0kΩ $(18$						
4.5 69.3kΩ (975.0)kΩ (591.0)kΩ (105.0)kΩ 4.6 63.9kΩ (1260.0)kΩ (761.0)kΩ (110.0)kΩ 4.7 59.4kΩ (1730.0)kΩ (1050.0)kΩ (115.0)kΩ 4.8 55.4kΩ (1610.0)kΩ (120.0)kΩ 4.9 52.0kΩ (125.0)kΩ 5.0 48.9kΩ (130.0)kΩ 5.1 46.2kΩ 1880.0kΩ 1140.0kΩ (136.0)kΩ 5.2 43.8kΩ 937.0kΩ 568.0kΩ (141.0)kΩ 5.3 41.6kΩ 625.0kΩ 379.0kΩ (147.0)kΩ 5.4 39.6kΩ 469.0kΩ 284.0kΩ (153.0)kΩ 5.5 37.8kΩ 375.0kΩ 227.0kΩ (159.0)kΩ 5.6 36.1kΩ 313.0kΩ 189.0kΩ (165.0)kΩ 5.7 34.6kΩ 268.0kΩ 162.0kΩ (172.0)kΩ 5.8 33.3kΩ 234.0kΩ 142.0kΩ (178.0)kΩ 5.9 32.0kΩ 208.0kΩ 126.0kΩ (185.0)kΩ						
4.6 63.9kΩ $(1260.0)kΩ$ $(761.0)kΩ$ $(110.0)kΩ$ 4.7 59.4kΩ $(1730.0)kΩ$ $(1050.0)kΩ$ $(115.0)kΩ$ 4.8 55.4kΩ $(1610.0)kΩ$ $(120.0)kΩ$ 4.9 52.0kΩ $(125.0)kΩ$ 5.0 48.9kΩ $(130.0)kΩ$ 5.1 46.2kΩ 1880.0kΩ 1140.0kΩ $(136.0)kΩ$ 5.2 43.8kΩ 937.0kΩ 568.0kΩ $(141.0)kΩ$ 5.3 41.6kΩ 625.0kΩ 379.0kΩ $(147.0)kΩ$ 5.4 39.6kΩ 469.0kΩ 284.0kΩ $(153.0)kΩ$ 5.5 37.8kΩ 375.0kΩ 227.0kΩ $(159.0)kΩ$ 5.6 36.1kΩ 313.0kΩ 189.0kΩ $(165.0)kΩ$ 5.7 34.6kΩ 268.0kΩ 162.0kΩ $(172.0)kΩ$ 5.8 33.3kΩ 234.0kΩ 142.0kΩ $(178.0)kΩ$ 5.9 32.0kΩ 208.0kΩ 126.0kΩ $(185.0)kΩ$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				(1/30.0)822		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					(1010.0)852	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
5.2 43.8kΩ 937.0kΩ $568.0kΩ$ $(141.0)kΩ$ 5.3 41.6kΩ $625.0kΩ$ $379.0kΩ$ $(147.0)kΩ$ 5.4 39.6kΩ $469.0kΩ$ $284.0kΩ$ $(153.0)kΩ$ 5.5 37.8kΩ $375.0kΩ$ $227.0kΩ$ $(159.0)kΩ$ 5.6 36.1kΩ 313.0kΩ $189.0kΩ$ $(165.0)kΩ$ 5.7 34.6kΩ $268.0kΩ$ $162.0kΩ$ $(172.0)kΩ$ 5.8 33.3kΩ $234.0kΩ$ $142.0kΩ$ $(178.0)kΩ$ 5.9 $32.0kΩ$ $208.0kΩ$ $126.0kΩ$ $(185.0)kΩ$				1000 01-0	1140.01-0	
5.3 $41.6k\Omega$ $625.0k\Omega$ $379.0k\Omega$ $(147.0)k\Omega$ 5.4 $39.6k\Omega$ $469.0k\Omega$ $284.0k\Omega$ $(153.0)k\Omega$ 5.5 $37.8k\Omega$ $375.0k\Omega$ $227.0k\Omega$ $(159.0)k\Omega$ 5.6 $36.1k\Omega$ $313.0k\Omega$ $189.0k\Omega$ $(165.0)k\Omega$ 5.7 $34.6k\Omega$ $268.0k\Omega$ $162.0k\Omega$ $(172.0)k\Omega$ 5.8 $33.3k\Omega$ $234.0k\Omega$ $142.0k\Omega$ $(178.0)k\Omega$ 5.9 $32.0k\Omega$ $208.0k\Omega$ $126.0k\Omega$ $(185.0)k\Omega$						
5.4 39.6kΩ 469.0kΩ 284.0kΩ (153.0)kΩ 5.5 37.8kΩ 375.0kΩ 227.0kΩ (159.0)kΩ 5.6 36.1kΩ 313.0kΩ 189.0kΩ (165.0)kΩ 5.7 34.6kΩ 268.0kΩ 162.0kΩ (172.0)kΩ 5.8 33.3kΩ 234.0kΩ 142.0kΩ (178.0)kΩ 5.9 32.0kΩ 208.0kΩ 126.0kΩ (185.0)kΩ						
5.5 $37.8 k\Omega$ $375.0 k\Omega$ $227.0 k\Omega$ $(159.0) k\Omega$ 5.6 $36.1 k\Omega$ $313.0 k\Omega$ $189.0 k\Omega$ $(165.0) k\Omega$ 5.7 $34.6 k\Omega$ $268.0 k\Omega$ $162.0 k\Omega$ $(172.0) k\Omega$ 5.8 $33.3 k\Omega$ $234.0 k\Omega$ $142.0 k\Omega$ $(178.0) k\Omega$ 5.9 $32.0 k\Omega$ $208.0 k\Omega$ $126.0 k\Omega$ $(185.0) k\Omega$						
5.6 $36.1k\Omega$ $313.0k\Omega$ $189.0k\Omega$ $(165.0)k\Omega$ 5.7 $34.6k\Omega$ $268.0k\Omega$ $162.0k\Omega$ $(172.0)k\Omega$ 5.8 $33.3k\Omega$ $234.0k\Omega$ $142.0k\Omega$ $(178.0)k\Omega$ 5.9 $32.0k\Omega$ $208.0k\Omega$ $126.0k\Omega$ $(185.0)k\Omega$						
5.7 34.6kΩ 268.0kΩ 162.0kΩ (172.0)kΩ 5.8 33.3kΩ 234.0kΩ 142.0kΩ (178.0)kΩ 5.9 32.0kΩ 208.0kΩ 126.0kΩ (185.0)kΩ						
5.8 33.3kΩ 234.0kΩ 142.0kΩ (178.0)kΩ 5.9 32.0kΩ 208.0kΩ 126.0kΩ (185.0)kΩ						
5.9 32.0k Ω 208.0k Ω 126.0k Ω (185.0)k Ω						
6.0 $30.8k\Omega$ $188.0k\Omega$ $114.0k\Omega$ $(192.0)k\Omega$						
	6.0		30.8kΩ	188.0kΩ	114.0kΩ	(192.0) k Ω

ISK ADJUSTIV	IENT RESISTOR	VALUES (CONT)	
1Adc Rated	PT6101		PT6103
2Adc Rated		PT6212	PT6214
3Adc Rated		PT6302	PT6304
V _o (nom)	5.0	5.0	12.0
V _a (req.d)			
6.2	156.0 k Ω	94.7kΩ	(207.0) k Ω
6.4	134.0 k Ω	81.2kΩ	(223.0)kΩ
6.6	117.0kΩ	71.0kΩ	(241.0) k Ω
6.8	104.0kΩ	63.1kΩ	(259.0) k Ω
7.0	93.8kΩ	56.8kΩ	(279.0) k Ω
7.2	85.2kΩ	51.6kΩ	(301.0)kΩ
7.4	78.1kΩ	47.3kΩ	(325.0) k Ω
7.6	72.1kΩ	43.7kΩ	(351.0) k Ω
7.8	$67.0 \mathrm{k}\Omega$	$40.6 \mathrm{k}\Omega$	(379.0) k Ω
8.0	$62.5 \mathrm{k}\Omega$	$37.9 \mathrm{k}\Omega$	(410.0)kΩ
8.2	$58.6 \mathrm{k}\Omega$	$35.5 \mathrm{k}\Omega$	(444.0) k Ω
8.4	$55.1 \mathrm{k}\Omega$	33.4kΩ	(483.0)kΩ
8.6	52.1kΩ		(525.0) k Ω
8.8	49.3kΩ		(573.0)kΩ
9.0	$46.9 \mathrm{k}\Omega$		(628.0) k Ω
9.5	$41.7k\Omega$		(802.0)kΩ
10.0	$37.5 \mathrm{k}\Omega$		(1060.0) k Ω
10.5	$34.1 \mathrm{k}\Omega$		(1500.0) k Ω
11.0	31.3kΩ		
11.5			
12.0			
12.5			608.0kΩ
13.0			304.0kΩ
13.5			203.0kΩ
14.0			$152.0 \mathrm{k}\Omega$
14.5			122.0kΩ
15.0			101.0kΩ
15.5			86.8kΩ
16.0			75.9kΩ
16.5			67.5kΩ
17.0			60.8kΩ
17.5			55.2kΩ
18.0			50.6kΩ
18.5			46.7kΩ
19.0			43.4kΩ
19.5			40.5kΩ
20.0			38.0kΩ
20.5			35.7kΩ
21.5			33.8kΩ
21.5			32.0kΩ
22.0			30.4kΩ

R1 = (Blue) R2 = Black

PT6100/6210/6300 Series

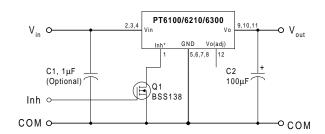
Using the Inhibit Function on Power Trends' Wide Input Range Bus ISRs

For applications requiring output voltage On/Off control, the 12pin ISR products incorporate an inhibit function. The function has uses in areas such as battery conservation, power-up sequencing, or any other application where the regulated output from the module is required to be switched off. The On/Off function is provided by the Pin 1 (*Inhibit*) control.

The ISR functions normally with Pin 1 open-circuit, providing a regulated output whenever a valid source voltage is applied to $V_{\rm in}$, (pins 2, 3, & 4). When a low-level² ground signal is applied to Pin 1, the regulator output will be disabled.

Figure 1 shows an application schematic, which details the typical use of the Inhibit function. Note the discrete transistor (Q1). The Inhibit control has its own internal pull-up with a maximum open-circuit voltage of 8.3VDC. Only devices with a true open-collector or open-drain output can be used to control this pin. A discrete bipolar transistor or MOSFET is recommended.

Equation 1 may be used to determine the approximate current drawn by Q1 when the inhibit is active.


Equation 1

$$I_{stbv}$$
 = $V_{in} \div 155k\Omega$ ± 20%

Notes:

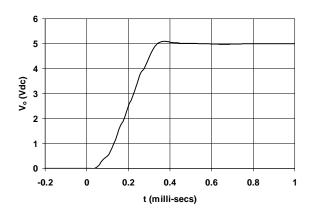

- The Inhibit control logic is similar for all Power Trends' modules, but the flexibility and threshold tolerances will be different. For specific information on the inhibit function of other ISR models, consult the applicable application note.
- 2. Use only a true open-collector device (preferably a discrete transistor) for the Inhibit input. <u>Do Not</u> use a pull-up resistor, or drive the input directly from the output of a TTL or other logic gate. To disable the output voltage, the control pin should be pulled low to less than +1.5VDC.
- 3. When the Inhibit control pin is active, i.e. pulled low, the maximum allowed input voltage is limited to $+30{
 m Vdc}$.
- Do not control the Inhibit input with an external DC voltage. This will lead to erratic operation of the ISR and may over-stress the regulator.
- Avoid capacitance greater than 500pF at the Inhibit control pin. Excessive capacitance at this pin will cause the ISR to produce a pulse on the output voltage bus at turn-on.
- Keep the On/Off transition to less than 10μs. This
 prevents erratic operation of the ISR, which can cause a
 momentary high output voltage.

Figure 1

Turn-On Time: The output of the ISR is enabled automatically when external power is applied to the input. The *Inhibit* control pin is pulled high by its internal pull-up resistor. The ISR produces a fully regulated output voltage within 1-msec of either the release of the Inhibit control pin, or the application of power. The actual turn-on time will vary with the input voltage, output load, and the total amount of capacitance connected to the output Using the circuit of Figure 1, Figure 2 shows the typical rise in output voltage for the PT6101 following the turn-off of Q1 at time t =0. The waveform was measured with a 9Vdc input voltage, and 5-Ohm resistive load.

Figure 2

